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UTILITY OF THE BETA-MULTINOMIAL DISTRTBU%ION~’
IN MULTIPLE-CLASSIFPCAIION‘SCHEMEJ

Abstract - o . .

The present study is an attempt to answer the ‘following research

question: Can the re11ab111ty of a criterion- referenced test be accurately

determined a¢cording to a multiple c1ass1f1cat1on of the student's performance?

Spec1f1ca11y, this study pursues a sound statistical model, i.e., the beta—

mu1t1nom1a1 model, which postulates the probab111ty d1str1but1on of exam1nee s

degree of mastery on a criterion- referenced test From th1s mode1, ‘a procedure

, for assess1ng the reliability of the testing 1nstrument can then be developed.

~ Ideally and f1na11y, several real-life data sets should have been eiployed

§/<T—W\ ip order to justify empirically (or ref1ne) this reliability est1met1om

procedure. Results from this study ‘should and wod]d solve some knotty

psychometric difficulties which are presently hindering the progress of the

criterion-referenced testino movement.

.
-

Background

Within the domain of criterion-referenced testing, various methods
have existed in"the“1iterature'whlch‘are intended to assess the reliability
of a test (Subkoviak, 1979). Among these procedures Huynh's single-
administration approach has‘received much attention due to the elegance
of its model and tolerable bias associated with its estimates (Huynh, 1976;
Subkoviak, 1978). Subsequently, Huynh's procedure was well investigated

- and simplified for classroom teachers or practitoners who might not have
.access ‘to a computer (Peng and Subkoviak, 1980). . |

The Beta Binomial Mode1

Two ' maJor assumpt1ons under11e Huynh s procedure:
(1) A b1nom1a1 density function is assumed for the distribUtion\of scores
|
(x) forian examinee with true ability f over repeated n- itdm tests.

Therefore, s X ’
T 3= (D )™ e

-g is the proportion of items in the item-population that an examinee
“can correct]y answer. ‘




 and Lord, 1962) that
i (or negative hyper-

(") '15(o(+x~ n+,5—-x)/3(o(,,5) ,é“%

where n= number of 1tems on a test and
P

B( . )— a beta function defined by the parameters iﬁ.the parenthesis.

A bivariate béta-Binomia] distribution is determined Simi]arly,
B, p)

-Re]iabi]fty Indices derived from the Beta-Binomial Model

B (o<‘+x+y y Kt =x=y).

Under the beta-binomial mode1; a criterion-referenced test is simply
a mastery test. A mastery test typically classifies an examinee into

one of the two categories: master or nonmaster, according to a predetermined
criterion or cutoff. Figure 1 below depfcts,this general decision-making

framework.

Form Y . :
v N . o . ) - {
) Master - Nonmaster Marginal R
_ c _ ~Proportions
Master P00 . | , Py | |
Form X c — — ~\\\ :
Nonmaster _ P 1 1 P1

]



'—when two parallel forms X and Y exist , the probabi]ity of COnsistehv '
~ c1assification of'pupi1s is composed of. two e1ements the probab111ty of
a nonmaster cons1stent1y identified by beth forms and that of a master
.aga1n by X_and Y. Mathemat1ca1]y,-th1s prohap111ty can be expressed as

. v ’ . . . y . , - .

Pcensistent classification P
C p

. ‘ Qo

~
11

+ P

AN

Th1s b1nary c1ass1f1cat1on is equally imposed on 1nd1v1duaT 1tems from .
the perspective of'a beta-binomial model . A]ternat1ve1y,»a standard1zed
kappa coefficient can be used also to suffice the purpose of quant1f§3ng ;

-

a reliability . This leads into the following definitipn

Kappa= VP chance .= ﬁ- (P% +‘Ei )
2 2
pax(P) = Peharice 1- (Py +P] )

Statement of the Pr5b1em

Unfortunate]y, the Huynh's approach ‘as well as the s1mp11ed procedure
assumes that an exam1nee either masters or fails a test In order words, -
these approaches are restricted to mastery tests only. It is ,however,
‘more realistic. to assume that a typical pupil is capab]e of master1ng
a port1on, "if not the ent1rety, of all the materials taught Hence, a.
mu1t1p1e classification scheme on items and tests seems reasonab]e for'
determining-a student's level of mastery on a cr1ter1onvreferenced test.
This suggests the development of the heta-mu]tinbmiailmode1, which\is an -

expansion of the .beta-binomial model under]yihg the Huynh method.
- . '(e j’ )

The Beta-Multinomial Model

’ Three/useful references are given by Cheng‘(1964{'in modern Chfnese),
" Ishii and Hayakawa (1960) and Mosimann (1962). The original manuscripts
were pub]ished-in separate-and yet remote locations around the world; hence,
they singalled an a1arm1ngmessage for more headaches in days to come as
long as I rema1ned 1nterested in pursuing this line of research {Sigh!)

Two major - assumpt1ons jimplied by the beta-multinomial model :




‘ . . . . »
(1) A'mu1tinomi§1 density function is assumed for the conditional distri- .
bution of ‘scores x (;x] + wbxz) for an examinee with'true ability -

. -g(_-: 4.+ 94 over repeated N-items test. :
"‘.mh . F .t
UK | gy _ AU
‘ T X X, . . N-Xg-X,
e — (o) (eh? (i) V2,
L Xy Kt (NXqX)t ; _ | |
T -’ B . 0< (X=X, +wX, )< N g

.* where X1=# of items that an examinee\can,complete1y mas%er,“
) X2=# of “items that an examinee can partially master, _

w =partial credit awarded -to items on which an examinee demonstrates partial’
mastery. Which equals a constant term in the equation, ‘

zy=the proportion of items in the item population that an examinee can
correctly answer, and -

tp=the proportion of items in the item population that an examinee can
partially answer. ’ “

(25 A multivariate beta distribution for z; & ¢, is.assumed;aCross the
pdpu1ation‘gf examinees.
Under these.assumptions,. it can be shown (Mo§1mann, 1962) that

the probability distribution of X is a compound beta-multinomial

. N I-% A o belel
v JAs [y g g,

)

. N ) Y - 1
T ! (NXX,): B(a) ,zza 2 Blay sas )
L . where B( , )= a beta function defined by the parameters in the
) parentheses. -

. - N - .
~ . : - . '
. A . -~ - .
L f N
c




Estimation procedures of th%s complex parqmetric modé]‘dre pdovided
in Cheng (1964). :However,.phenﬁ‘s procedures are far too sophisticated
o to be implemented by practftionérs in edycgtion S1mp11f1ed procedures
? ) ' (such as the method of moments) ought to be deve]oped and also the
applications of the beta—mu]tinom1a1 mode]l in_the” Titerature. deserves
. an in-depth review. o ‘ - . -
: . P -

,Whenvthe beta-multinomial model is generalized to a joint distribution
of scores x and y on parallel tests, a-bivariate beta-multinomial distri-
" bution should result (py mathematica1'derivation) This b1var1ate
“distribution, denoted by f(x,y), shou1d have the sapie set of parameters
as f(x), since x and y are obta1ned from parallel tests and identical
criteria should be enforced in both”cases. Hence, estimated parameters
~developed in any’ est1mat1on procedure should be sufficient in determ1n1ng
" the b1var1ate d1str1but1on of scores, f(x,y), which would result if
'two tests were indeed ‘administered. Th1s(rat1ona1e constitutes a sound
t - ' basis “for deve]op1ng a single- -administrat¥bn approach in assess1ng
s “the re11ab111ty of a criterion- referenced test.

Bl

Proposed Procedure for-Assessing Reliability based on Beta-Multinomial Model
Y B . [3 B

Two phases: milated Data; and.
' Regl Data (very difficult to locate)

. Simu]dted.Data.n Four steps are necessary :
Step 1-- Various‘yo1ue5'of a1phas are considered according to the
- _specification in Table 1 (page 6). o )
‘Step 2-- Specifications on'test length (N) and cutoff scores (C1 and Cé)
are included in Table 2 (page 7). )
Step 3-- Generaté ‘the f(x) and f(x,y) d?stributioﬁs based on Steps 1 and 2.
Step 4-- Develop a single-administration approach to compute P or kappa.

:Tentatively,‘ P=POO + P]] + P22 and
~ Kappa <P - Pchance ,
| 1 - Pehance




Table © 1

it

- Selected Beta Distributions for Study

Case ay oag oy ~ general description
\
L. 1T 1 ~ Uniform

f
\

c I 5 .5 .Sﬁ‘\\ U-shaped

C o . Symmetric, unimodal
I1] 2 2 2 & platykurtic

Symmetric, unimodal

v 3 3 3 \ & Teptokurtic
v 6 2 2 Negatively skewed
g

’



- Table 2

* SELECTED VALUES OF N, C; and C,

G g C, o
N 45% 55% *  65% 75% 85% 95%
5 3 3 s 4 5 5
(2.25) (2.75) (3.25). -~ (3.75) (4.25). . (4.75)
10 5 6 7 8 9 10
(4.50) (5.50)  (6:50) (7.50) (8.50) (9.50)
15 7 9 10 12 13 15
(6.75) (8.25) (9.75)  (11.25)  (12.75)  (14.25)
20 9 -1 13 15 17 19
(9.0)  (11.0)  (13.0) (15.0) (17.0) (19.0)
- , . R | . '
30 ‘14 17. 20 23 26 - 29
(13.5) .(16.5)  [(19.5)" . (22.5) (25.5) (28.5)
BN
-~ - ;1 . ~ '



Real Pata Analysis . Also four steps are to be executed::

Step 1--

Step 2--
Step 3--

-Step 4--

Estimate ;<L,C¥z, and oy via the method of moments. This needs
an in-depth review of the literature).

Ge éréte the f(x 5 and f(x,y) distribution based on Step 1- abbve.
Compute P and EEBBE accord1ng to the single-administration proce-
dure deve]oped in Step 4 under the simulated study.

Compare P against true P ‘obtained from the test-retest results;

Also, perform the same contrast between FEBBE and true kappa to

" determine whether the befﬁ—mu]tinomia] model along with the single

test administration Frocedure yie]d.satisfactéry results.

10 | ‘

&
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s Preliminary Results Obtained from Simulated Data

vt

‘In simulating artificial data from the beta—muitipomiai mode1‘ the

actual criterion scores (Tab]e 2) were never utilized.. Instead the
proport1on of mastered items and that of partially master items were
sufficient. Figures 2-5 (Pp. 11-14) depict the_probab111ty distributions
of trichotomous dqta simulated from f(x) on pageé 4. Here, 10% refers®to
the percent of mastered items whereas 70% the partially mastered,items.
~Then on page 15, Figure 6 combines various beta funct1ons with 5 d1st1nctv
test 1engths The oferlay effect shows clearly that the shape of the .
compound beta- multinomial distribution is determ1ned so1e1y by parameters
~ of the beta functions. The we1ght coeff1cment (W)f as one might imagine,
would not affect the probabilistic functions shown on pages 11-15.
: B When the_percentages varied from a (10%, 70%) combination to"a °
' ' (30% 30%) combination, the appearance of beta-multinomial d1str1but1ons
a1tered accordingly; although the general shape remained unchanged
So, where 'is the beef? Sadly enough, the s1mu1ated data based on
theybeta mu1t1nom1a1 distributions did not depart s1gn1f1cant1y from
thqse generated by the,beta-b1nom1a1.mode1_(see F1gures 9-13 for the
univariate cases and Figure 14 for one bivariate case). Perhaps this
was the main reason why Huynh -preferréd the beta-binomial model even for
cases involving multiple c1ass1f1cat1ons (e.g., Huynh, 1978,
Psychometr1ka) His preference certa1n1y should not preclude the ut111ty
of beta- mu1t1nom1a1 models in the present context. Conceptua]]y, the beta-
multinomial model is well matched with the framework of a mu1t1p1e
c1ass1f1cat1on more so probably than the simple beta- b1nom1a1 mode]
Before comm1tt1ng a fatal error in her conceptua11zat1on of the prob]em,
the author welcomes 1ns1ghts or comments on her proposed Methodo}ogy

L
"
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Figure 14

BIVARIATE BETA-BINOMIAL
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